Токсины стафилококка

Токсины стафилококка

Стафилококки, в частности S. aureus продуцируют ряд токсинов, которые классифицируются на три группы : 1) Цитолитические — гемолизины и лейкоцидины; 2) Энтеротоксины и 3) Эксфолиативный токсин.

Гемолизины — 4 антигенно- различных токсина: a, b, g, d. Из всех них альфа- лизин, или альфа- токсин наиболее клинически важен. В культуре он продуцируется только в аэробных условиях, и его продукция усиливается высокой концентрацией диоксида углерода. Это протеин, который инактивируется при 60оС, но имеет парадоксальное свойства восстанавливать свою активность при дальнейшем нагревании между 80о и 100оС. Это связано с тем, что токсин комбинирован с термолабильным ингибитором. При повышении температуры ингибитор инактивируется, высвобождая токсин. Сам ингибитор инактивируется при 60 градусах. В большей степени активен по отношению к эритроцитам барана, в меньшей человека. Он разрушает лизосомы, при этом повреждаются макрофаги и тромбоциты. Это является причиной повреждения циркуляторной системы, мышечной ткани и коры надпочечников. Он является токсоидом и благодаря этому стимулирует иммунитет к стафилококкам.

Альфа-токсин S.aureus может рассматриваться в качестве прототипа олигомеризующих порообразующих цитотоксинов. Ген, кодирующий альфа-токсин, находится в виде единичной копии в хромосоме большинства патогенных штаммов S.aureus, и его экспрессия регулируется внешними факторами на уровне транскрипции дополнительным геном регулятором (agr). Токсин синтезируется в виде молекулы-предшественника, состоящей из 319 аминокислот и имеющей на N-конце сигнальную последовательность из 26 аминокислотных остатков. Выделяемый готовый токсин (протомер) представляет собой гидрофильную молекулу молекулярной массой около 33 кДа, в которой отсутствуют остатки цистеина.

В настоящее время изучена кристаллографическая структура завершенной поры, образованной альфа-токсином. На поверхности плазматической мембраны 7 протомеров токсина образуют грибовидный гептамер (232 кДа), содержащий 3 различных домена. Домены, формирующие «шляпку» и «край», расположены на внешней поверхности плазматической мембраны, а домен «ножки» служит трансмембранным каналом.

Альфа-токсин обладает цитолитическими свойствами в отношении различных типов клеток, включая моноциты, лимфоциты, эритроциты, тромбоциты и эндотелиоциты человека. Различают три последовательные стадии повреждения клеточной мембраны под действием альфа-токсина. Протомеры токсина сначала связываются с мембраной клетки-мишени при помощи не установленных рецепторов или не специфически абсорбируются фосфатидилхолином или холестеролом, входящими в состав билипидного слоя мембраны. Во-вторых, связанные с мембраной протомеры олигомеризуются в нелитический гептамерный комплекс. И в заключение, гептамер претерпевает ряд конформационных изменений, конечным результатом которых является формирование «ножки», которая проникает сквозь цитоплазматическую мембрану. Через образовавшуюся пору происходит вход и выход небольших молекул и ионов, что ведет к набуханию и гибели клеток, имеющих ядро, или осмотическому лизису эритроцитов.

Кроме того, отмечено, что при образовании пор запускаются вторичные процессы, которые также могут обусловить развитие патологических последствий. Эти процессы включают активацию эндонуклеаз, увеличение экзоцитоза тромбоцитов, высвобождение цитокинов и медиаторов воспаления. На примере нескольких экспериментальных моделей на животных было показано, что альфа-токсин является фактором вирулентности S.aureus, однако его точная роль в развитии стафилококковых заболеваний у человека остается неясной.

[Другими порообразующими токсинами являются RTX-токсины грамотрицательных бактерий (гемолизины E. coli) и стрептолизин O, выделяемый S.pyogenes].

Бетта-лизин S. aureus гемолитичен для бараньих эритроцитов, но не для человеческих и кроличьих. Он является сфингомиелиназой и разрушает клеточные мембраны. Продуцируется в аэробных и анаэробных условиях.

Гамма-лизины — наиболее слабые токсины, но действует на все типы эритроцитов от различных млекопитающих.

Дельта-лизин — литичен только для человеческих и нелитичен для бараньих и кроличьих эритроцитов. Действует как детергент, растворяя структурные липиды ЦПМ.

Альфа- и дельта- лизины найдены только у штаммов из клинического материала от человека, тогда как бета- лизины найдены и у штаммов других животных.

Лейкоцидины — токсины состоящие из двух фракций S и F, токсичны только в присутствии обеих фракций, но не по одиночке. Являются летальнымы для лейкоцитов многих животных. Мишенью для них является трифосфоинозитид в мембранах лейкоцитов.

Стафилококковые энтеротоксины (SEA, SEB, SECn, SED, SEE, SEG, SEH, и SEI) отвечают за манифестацию стафилококковой пищевой токсикоинфекции, проявляющейся в рвоте, тошноте, диарее в течение 6 часов после употребления контаминированной пищи. Токсин резистентен к пищеварительным ферментам, термостабилен. Инактивируется медленно (10-40 минут) только при 100о, что зависит от его концентрации или источника (среды) нахождения. Молоко и молочные продукты наиболее частые источники отравления. Идентифицировано 8 типов токсинов A, B, C1, C2, D, E, G, H и I. Тип, который ранее назывался F типом, в настоящее время называется TSST-1 (токсин синдрома токсического шока).

Энтеротоксины могут иметь другие биологические эффекты — пирогенный, митогенный, тромбоцитопенический, гипотензивный и цитотоксический.

Пищевые токсикоинфекции, вызванные приемом пищи, которая была ранее контаминирована Staphytlococcus aureus, являются одной из форм гастроэнтеритов, клинически проявляющихся рвотой /с/ или /без/ диареи. Это состояние называется стафилококковым пищевым отравлением (СПО) и следует за приемом пищи, которая была предварительно загрязнена S. aureus, и в которой таким образом произошло накопление SЕs (стафилококковые энтеротоксины). Признаки системной токсичности (лихорадка и низкое давление) редко наблюдаются в случаях СПО. Кроме того, СПО – обычно разрешается за короткое время (в пределах от 24 до 48 часов от появления первых симптомов). Не ясно, развивается ли долговременная устойчивость к СПО у людей. Однако, антитела к одному типу SE не обязательно обуславливают устойчивость к СПО вызванными другими серотипами токсинов. В некоторых случаях, антитела, против одного SE могут перекрестно реагировать против другого SE. Например, антитела к SEB могут защищать против SEC, потому что эти два SEs имеют перекрестные антитело-связывающее эпитопы.

Все SEs вызывают рвоту у приматов при оральном введении. Проникшие с пищей SEs не приводят к выраженной энтеротоксэмии, если не использованы чрезвычайно высокие дозы токсинов. В отличие от SEs, оральное введение TSST-1 не вызывает рвоты у обезьян, но с другой стороны возникают системные признаки TSS (стафилококкового токсического шока) когда токсин вводится per or кроликам. Несмотря на его оральную токсичность, TSST-1 не был признан с медицинской точки зрения энтеротоксином. Это связано с тем что TSST-1 восприимчив к действию пепсина и может поэтому быть менее устойчив в кишке по сравнению с SEs. С другой стороны в кишечнике рецепторы для SEs и TSST различаются. Альтернативная гипотеза заключается в том, что весь орально вводимый TSST-1 быстро входит в системное кровообращение не достигая таким образом нижних отделов пищеварительного тракта.

Гастроэнтериты, спровоцированные SEs, ассоциированы с характерными гистологическими нарушениями в различных областях гастроинтестинального трактата, но наиболее серьезные повреждения появляются в желудке и верхней части тонкой кишки. В этих областях наблюдается гиперемия слизистой с проникновением нейтрофилов в эпителиальный слой и lamina propria. В просвете 12-перстной кишки наблюдается накопление слизистогнойного экссудата. В тощей кишке наблюдается расширение крипт и разрушение или исчезновение границы щеточной каймы. В lamina propria тощей кишки появляются обширные нейтрофильные и макрофагальные инфильтраты.

Патогенез

Известно, что цель для SЕs, связь с которой токсинов приводит к появлению рвотного эффекта расположена в брюшной полости, где существуют предполагаемые клеточные рецепторы для SEs. Так как эти рецепторы еще не идентифицированы, остается много неясного относительно ранних событий в патогенезе СПО. Ведущая гипотеза – заключается в том, что рвота возникает в ответ на SE-обусловленное воспаление. Признаки СПО высоко коррелируют с генерированием множества провоспалительных медиаторов, включая простагландин E2, лейкотриен B4, и 5-гидроксиэйкозатетраеноевой кислоты. Цистеиниловые лейкотриены, типа лейкотриена E4, также вовлечены как критические посредники в СПО. Неясно, синтезируются ли эти посредники непосредственно или косвенно в ответ на SEs. В конечном счете, рвотная реакция в ответ на SEs зависит от активации медуллярного рвотного центра, который стимулируется импульсами, переданными через блуждающий нерв (n. vagus) и симпатическую нервную систему.

Несколько групп исследователей считают, что первичными источниками воспалительных медиаторов, синтезируемых и секретируемых в течение СПО, являются тучные клетки. Одна текущая гипотеза заключается в том, что SEs вызывают дегрануляцию тучных клеток после прямой адгезии токсина на рецепторах этих клеток, а не через типичный IgE — опосредованный процесс активации тучных клеток. С другой стороны есть результаты, которые указывают, на то что активация тучных клеток in vivo требует, совместной адгезии на них SEs в комплексе с некими костимулирующими сигналами. Альтернативно, существует нейрогенная модель, в которой тучные клетки стимулируются нейропептидами, которые секретируются сенсорными нервами. Одним из предполагаемых пептидов активирующий тучные клетки и который, как показано, вовлечен в SEB-обусловленную токсичность, была субстанция P. Однако в других исследованиях не было обнаружено адгезии SEA к нервной ткани в гастроинтестинальном тракте у крыс. Этот результат подвергает сомнению теорию о нейропептидном механизме действия SEs. В заключении можно отметить, что роль тучных клеток в СПО подтверждена, однако механизмы, через которые SEs вызывают дегрануляцию тучных клеток, остаются пока не выясненными. Однако понятно, что механизмы действия энтеротоксинов у S. aureus значительно отличается от механизма действия экзоэнтеротоксинов, например, у энтеротоксигенных кишечных палочек и у холерного вибриона.

Эксфолиативные токсины (ETA и ETB) — вызывают эксфолиативные повреждения, при которых внешний слой эпидермиса отделяется от ниже лежащих тканей. Разрушает межклеточные связи (десмосомы) и способствует инвазии ткани без повреждения клетки. При этом образуются межтканевые щели, заполненные жидкостью. Проявляется образованием пузырей. (Болезнь новорожденных или детей младше 5 лет — болезнь Ritter). В настоящее время известно два типа токсинов — термостабильный, синтез которого контролируется хромосомными генами и термолабильный — плазмидами.

TSST (токсин синдрома токсического шока у S. aureus) — синдром токсического шока — мультисистемное заболевание, которое проявляется лихорадкой, гипотензией, миалгией, рвотой, диареей, гиперемией слизистых и эритематозной сыпью с отшелушиванием (десквамацией). Все эти симптомы ассоциированы с инфекцией слизистой, вызванной штаммами S.aureus. В основном возникает у молодых женщин детородного периода при использовании определенного типа высоко адсорбирующих тампонов. TSST член семейства суперантигенов, которые обладают способностью стимулировать Т-клетки, фактор некроза опухоли и кроме этого индуцируют цитокин интерлейкин-1.

Некоторые бактериальные токсины действуют непосредственно на Т-клетки и антигенпрезентирующие клетки иммунной системы. При нарушении функций этих клеток, вызванных токсином, развиваются заболевания. Одна из больших групп этой категории токсинов — пирогенные токсины, обладающие свойствами суперантигенов (PTSAg). Их отличительная особенность — мощное стимулирующее действие на клетки иммунной системы, пирогенность и усиление эндотоксического шока. Эти термостабильные токсины с молекулярной массой от 22 до 30 кДа включают стафилококковые энтеротоксины серотипов от A до E, G и H, стафилококковый TSST-1, пирогенные экзотоксины стрептококков группы А (серотипы от А до C и F), суперантиген стрептококков группы А.

Все токсины, относящиеся к PTSAg, имеют сходную биологическую активность, при этом среди членов данного семейства выделяется TSST-1, имеющий менее 30% гомологии по аминокислотному составу с другими токсинами данного семейства. Ген, кодирующий TSST-1, локализован на хромосоме и в тоже время у штаммов S.aureus ген tst входит в состав различных мобильных генетических элементов. Токсин синтезируется в виде молекулы-предшественника, состоящей из 234 аминокислотных остатков, причем первые 40 остатков являются сигнальной последовательностью, которая отщепляется в процессе образования зрелого токсина массой 22 кДа.

Экспрессия TSST-1 зависит от концентрации кислорода, температуры, pH и уровня глюкозы и регулируется agp локусом S.aureus. По данным кристаллографического анализа, TSST-1 так же, как и ряд других токсинов, относящихся к PTSAg, состоит из двух различных доменов, но в отличие от других членов семейства TSST-1 не нуждается в ионах цинка в качестве кофактора.

В целом мощное иммуностимулирующее свойство PSTAg является прямым результатом связывания токсина с различными участками снаружи от пептидсвязывающего участка молекул главного комплекса гистосовместимости второго класса (расположенных на поверхности антигенпрезентирующих клеток) и специфических участков на рецепторах Т-клеток. В частности, В домен TSST-1 сначала связывается с a-цепью молекул человеческого лейкоцитарного антигена DR1, в то время как А домен специфически связывается с V-b2-элементами рецепторов Т клеток.

Связывание TSST-1 с V-b-2 элементами рецепторов Т-клеток приводит к массивной пролиферации (до 20%) периферических Т-клеток — явление, которое радикально изменяет набор V-b- у Т-клеток. Т-клетки, образовавшиеся в результате пролиферации, могут существовать в состоянии анергии или подвергаются апоптозу. Пролиферация Т-клеток сопровождается массивным высвобождением лимфоцитарных (интерлейкин [ИЛ]-2, a-фактор некроза опухолей, g-интерферон) и моноцитарных (ИЛ-1, ИЛ-6, a-фактор некроза опухолей) цитокинов. Они вызывают гипотензию, высокую температуру тела и диффузную эритематозную сыпь, которые характерны для синдрома токсического шока. На протяжении длительного времени TSST-1 рассматривают как ключевую субстанцию в развитии синдрома стафилококкового токсического шока, однако в последние годы его стали связывать и с развитием синдрома Кавасаки — ведущей причины приобретенных пороков сердца у детей в США.

Не нашли то, что искали? Воспользуйтесь поиском:



Source: studopedia.ru


Добавить комментарий